
Logistic Regression
Before reading this blog post, please read the post on Linear Regression.

Why we need logistic regression
In supervised learning, the label can be numerical and categorical, where category can be a
predefined set of things. In linear regression where we had numerical labels, the output is
continuous. When we have categorical labels, the output is discrete. Linear regression works
well if the data points are roughly aligned. For example, based on a set of features, if we are
classifying whether a fruit is apple (1) or not (0), we get a graph with data points which are
discrete and not aligned. Additionally, for discrete outputs, when we have an outlier the linear
regression becomes unstable.

In the above example, we can see that one outlier has skewed the line in a significant fashion.

Sigmoid Activation Function

Logistic regression helps in binary classification. To overcome the shortcomings mentioned
above, we need a function which can give the output within a certain range, in this case
between 0 and 1. So, for logistic regression, we take the weighted sum of inputs and then pass
it to a sigmoid function which will compress the output value between 0 and 1.

Weighted sum of inputs = w0x0+ w1xi+ w2x2+ w3x3 …..+ wmxmwhere w0 is for bias, x0 = 1

Sigmoid function, 𝞼 (z) =
1

1 + 𝑒−𝑧

https://vmayakumar.wordpress.com/2024/01/02/linear-regression

Sigmoid function, 𝞼 (weighted sum of inputs) =
1

1 + 𝑒−(𝑤0 𝑥0 + 𝑤1 𝑥𝑖+ 𝑤2 𝑥2+ 𝑤3𝑥3 ….. + 𝑤𝑚 𝑥𝑚)

The sigmoid function, also known as the logistic function, is used to transform the linear
combination of input features into probabilities as shown above. It smoothly transitions between
0 and 1 but it never reaches the value 0 as well as 1.

Through logistic regression, we end up creating a decision boundary from the learned
coefficients and intercept that best fit the data during the training process. The decision
boundary happens when the weighted sum of the inputs is equal to 0, which is when the
sigmoid function is 0.5. When the weight sum of inputs >= 0, we classify the output to 1 as the
probability is greater than 0.5, and when the weighted sum of inputs < 0 we can classify the
output to 0 as the probability is less than 0.5. The decision boundary can be shown as below:

Log Loss Function
While discussing gradient descent we said the function needs to have 3 properties: convex,
continuous and differentiable. Unfortunately, the mean square loss function does not work
well with sigmoid functions as the loss function is not convex anymore, which means that we
could have many local minima mingled with global minima. We need to use a different loss
function called log loss function.

Cost function = - () + ()
1
𝑛

𝑖=1

𝑛

∑ 𝑦
𝑖
 * 𝑙𝑜𝑔(𝑦

𝑖
𝑝𝑟𝑖𝑚𝑒 (1 − 𝑦

𝑖
) * 𝑙𝑜𝑔(1 − 𝑦

𝑖
𝑝𝑟𝑖𝑚𝑒

where, - Output label, - Predicted value𝑦
𝑖

𝑦
𝑖
𝑝𝑟𝑖𝑚𝑒

This function says, if the output label is 1 and the predicted value is closer to 1, the log loss is
closer to 0, else it will be a huge value. Similarly, if the output label is 0 and the predicted value
is closer to 0, the log loss is closer to 0, else it will be a huge value. We also subtract the overall
result, as the log values between 0 and 1 are negative and we want the loss function to be
positive so that it will be easy to understand that our optimization goal is to reduce the loss
value. It can be shown in the below graphs:

Gradient Descent of Log Loss Function

Partial derivative of the log loss function is very similar to the mean squared loss function. The
partial derivative of log loss function can be shown as below:

Partial Derivative = (((w0x0(i)+ w1x1(i) + ... + wmxm(i)) - Ground truth) * xm(i)) / n
𝑖=1

𝑛

∑

(J(wm) w.r.t wm)

The derivative can be worked out by knowing the derivatives of a few key functions and
applying the “Chain rule” of Calculus.

Solution
Similar to linear regression, to solve for logistic regression, all we have to do is compute the
partial derivatives for our cost function w.r.t each of the features and using the magnitude and
direction of their derivative value, we will adjust all the feature’s weights accordingly so that we
find the appropriate weights where the cost function is minimum. The adjustment is made using
learning rate, which will be a small value like 0.1, 0.01, 0.001 etc.,

Multinomial logistic regression
In our example, we used logistic regression to do binary classification, whether it is an apple or
not. What if we need to classify a fruit into 4 different types, say whether it is an apple, guava,
orange, or lemon. When we need to handle more than 2 classes, we call it multinomial logistic
regression.

Solving for multinomial is relatively straightforward using a one vs all approach. We simply run
the n-examples through all the n-classifiers. During the classification phase, we run the input
across all the n-classifiers and pick the one whose probability is highest which is computed
using the sigmoid function.

For ex, if we have 5 examples, 3 features(including bias), 2-output classifier, matrix
multiplication will be,

For the partial derivatives, now we need to multiply xm(i) with yprime - Ground Truth. Again, this
is similar to what we did during 1-output classifier and linear regression, it is just that we need to
factor in for the other output classifier using matrix columns.

Why logistic regression is considered linear classification
algorithm
Logistic regression is considered a linear classification algorithm, even though we use the
sigmoid function as the activation function whose output is non-linear after applying multiple
linear regression. The reason why logistic regression is considered a linear classification
algorithm is because it models the relationship between the independent variables (features)
and the log-odds of a binary outcome in a linear way. It can be shown as below:

Conclusion
In this post, we covered Logistic regression which is used when we need to categorize a set of
things. We saw how we combined multiple linear regression model with a sigmoid activation
function which made the output non-linear. This will pave the way for us to explore and
understand one of the most improved breakthroughs in machine learning, which is neural
networks.

References
Programming Machine Learning : From Coding to Deep Learning
Logistic Regression

https://www.amazon.com/Programming-Machine-Learning-Zero-Deep/dp/1680506609
https://www.adit.io/posts/2016-03-13-Logistic-Regression.html

